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HIGH FREQUENCY DRIFT WAVES WITH WAVELENGTHS BELOW 
THE ION GYRORADIUS IN EQUATORIAL SPREAD F 

I.  Introduction 

Recently in August 1977? during a coordinated ground based meas- 

urement campaign conducted at Kwajalein in the Marshall Islands, under 

the auspices of the Defense Nuclear Agency, the ALTAIR radar (operated 

by MIT Lincoln Laboratory) observed enhanced backscatter from equa- 

torial Spread F at I55 MHz and kl5 MHz (see Fig. 1; a detailed des- 

cription of these radar measurements will appear in another paper). 

This corresponds to F region irregularities at ~ 1 in and ~ 36 cm, re- 

spectively, which are below the 0 gyroradius.  Since these irregular- 

ities correspond to kr »  1 they cannot be explained by the linear 

theory of the universal drift instability (Kadomtsev, I965; Costa and 

Kelley, 1978 a,b). In the present letter we suggest that the drift- 

cyclotron instability (DC) (Mikhailovakii and Timofeev, I963) or the 

lower-hybrid-drift instability (LHD) (Krall and Liewer, 1971) can 

account for small scale F region irregularities.  These instabilities 

are excited by sharp density gradients which presumably evolve non- 

linearly from a long wavelength Rayleigh-Taylor instability (i.e., a 

two step process; see Haerendel, 197^- and Hudson et al., 1975).  In 

fact, Costa and Kelley (1978a) have presented in situ rocket data show- 

ing the existence of density gradients with scale lengths > 25 meters. 

In a collisional plasma, i.e., the equatorial Spread F ionosphere, 

the parameter which predominately determines which instability (DC or 

LHD) will be excited is 

C, = (v../n.)k2r? 
f    ii i   i 

Note:   Manuscript submitted March 23, 1978. 



where v  is the ion-ion collision frequency, fi. is the ion gyrofre- 

quency, r is the ion gyroradius, and k is the wavenumber perpendicular 

to the magnetic field. We note that Cf corresponds to ion viscosity 

in a fluid theory.  The DC instability can be excited in a dense 

plasma (u) 2 » fi2, where uu  is the electron plasma frequency and Q 
pe    e'      pe * J e 

is the electron gyrofrequency) when 

i 
L/r. < (1/2J£) (m./2m )2 and Cr «  1 

1 l  e      f 

with a real frequency and growth rate given by u) w £fi. and 
x 

y « (m /m.)4 !D.,   respectively (Mikhailovskii and Timofeev, I963). 

Here L is the plasma inhomogeneity (density gradient) scale length, I 

is the cyclotron harmonic excited, and m and m. are the masses of the 
' '     e     i 

electron and ion, respectively. For 0  (m. = 16 H ), T = 1000 K 

where r. = 5.6  m (typical F region parameters), the above condition 

on L corresponds to L < jkO  m (for the first harmonic, I  = l). Maxi- 

mum growth occurs for kr » (2T /T.)2 w 1 (for the F region iono- 
e     e i 

sphere) where r is the electron gyroradius.  For kr « 1 (i.e., 

kr. R* 170) the condition C^, « 1 becomes V../C1.   « m /m. , which for 
1 r 11 1    e i' 

typical F region parameters corresponds to n « 103 (n is electron 

density in units of cm 3). More generally the condition on C  for DC 

is, for typical F region parameters, (kr.)2 n « 2xl07, so that for 

somewhat longer wavelengths the condition on density becomes less 

restrictive. 

On the other hand, if C > 1 the ion-ion collisions destroy the 

ion gyroresonances, necessary for the DC instability,(Dougherty, I96U; 



Allan and Sanderson I976 )and the DC instability transforms into the LHD 

instability even though v ^ «flj_« The LHD instability is characterized 

by 

Q.        L Vm / ' 0.   \ L / \m / 1      e    1        e 

where the angular frequency u) = UJ +iv and maximum growth occurs for 

kr ~ (21 /T )2 ~ 1 (Davidson et al., 1977).  In the collisionless 

limit, the DC instability transforms into the LHD instability for 
1 

L/r < (m /m )4. For typical ionospheric parameters this corresponds to 

L < 30m, which occurs infrequently (Costa and Kelley, 1978a). However, 

in the C >  1 collisional regime for the LHD instability there is no 

threshold requirement on L. 

Thus, these instabilities can produce small scale irregularities 

on very short time scales, which is consistent with previous observa- 

tional evidence (Farley et al., 1970; Woodman and LaHoz, I976) as well 

as in the ALTAIR data cited here.  It should be pointed out that in 

this letter we are presenting two extreme regimes, viz., Cf « 1 and 

Cf > 1.  In some instances (i.e., for certain densities, etc.) irreg- 

ularity wavelengths ~ 1 m could fall in the regime C < 1.  This tran- 

sition regime (in Cf space) involves a more complicated analysis than 

is presented here and will be the subject of a future, more lengthy paper. 

II. Linear Theory 

Here we present a concise overview of the linear theory and its 

application to the equatorial Spread F ionosphere.  A more detailed 

analysis will be presented in a later paper. We assume: (l) the plasma 

to be composed of electrons and 0  ions, (2) the magnetic field to be 



constant and in the z direction (B * B z), and (3) the plasma density o 

to depend on x only, n = n (x).  This density inhomogeneity produces a 

diamagnetic drift current such that V, • (V..-V. )y, where V,. = 
-d    di de J' di 

(V.a/2n, )(oC,n n /ox) and V. = - (V 2/2fl )(of,n n /ox) and V. and V 
ii     o        de     ee     o        1     e 

are the ion and electron thermal velocities, respectively. Here we 

are only interested in flute modes (k*B = 0) and take perturbations of 

the form exp[i(ky-uut)], i.e., k = ky (ID = u) + iy), which maximizes the 

linear growth (Gladd, 1976; Gary and Sanderson,1977)• The electro- 

static approximation is made since |3 « 1 for the F region and use is 

made of the local approximation kL » 1, where L_1 = d£n n /ox. 

The general dispersion relation describing the DC and the LHD in- 

stability is 

D(oo,k)  =  1 +Xt +Xe = 0 (1) 

where 

(2 
a)    \ r       ua-kv, -1 

X     = 2 
e 

-b 
T  (b   )  = e    6I  (b   ),  0)      =  (l+TTne2/m  )?,  V    =  (2T  /m  )2,   b    =   (kr   )2/2, 

o    e o    e  '     pa- a    '    o a    a    '    a a ' 

r    = V  /n   ,  fJ    = eB/m c and  I     is  the modified Bessel  function.     For 
a        a    a      a a o 

the DC instability, Zc «  1, (Freidberg and Gerwin, 1977; Gary and 

Sanderson, 1977) 

p"     r kvdi     1 G    = J   dt  exp     iuot + b.(cost  -l)   -   i —— sin  t (h) 



and for the LHD instability, Cf >  1, (Allan and Sanderson, 1976) 

n.  /u)-kv,. 
G = - i  X  - '    di 4. z(- kv. * V kv. / (5) 

In order to better understand the physical nature of these instabil- 

ities, we will briefly consider the limit T -» 0, which results in a 

simple analytic dispersion relation.  A numerical study of Eq. (l) for 

realistic F region parameters (T ^  0) will be given afterward. 

A. Drift-Cyclotron Instability. We assume ID « *fl, (here t. =  1, 

2...) and b » 1 and find that 

1 /WA2 /   ID
2
 x  u>-kV.. , -. 

D(0),k) - I  (_!)  (l + -M)  +  ^ (l - -$r- r   fb. )) = 0   (6) 
pi ne i 

where T (b.) = I (b )exp[-b.l.  From Eq. (6) one can show that insta- 
'    L        xi X. 1 

1 

bility occurs for VJ./V. > (2m /m.)2£ with a maximum growth rate 
1 

v w ^n.(m /m )4.  The instability is reactive and is produced by the 

coupling of a drift wave ((% « kV  ) and an ion cyclotron wave 

(u)2 
w J0fi. ), which is clear from Eq. (6). 

B. Lower-Hybrid-Drift Instability. For a sufficiently large ion- 
1 

ion collision frequency (C£ > l) or drift velocity V../V > (m /m, )4 
r di i    e 1 

the DC instability makes a transition to the lower-hybrid-drift in- 

stability. Then the nature of the instability changes from reactive 

to dissipative. Physically, the ions behave as unmagnetized particles 

and can be resonant with a drift wave propagating perpendicular to B. 

The dispersion equation for this instability is 

u)2    2u)2.  ,   kVJ#      u>-kV..N 

n 2 k^ 2 v kvi y 



which has  the  solution 

(8) 2w2.    /        2u>2.        uo    2\ 

r       dik2v.2\     k^2     n2/ 
i i 

iu  -kV,.       u)2 

where we have  assumed u)/kV.   « 1.     From Eq.   (9)  one  finds  instability 

for U)-kV,.   < 0. 
di 

For parameters typical of the equatorial Spread F region, we now 

solve Eq. (l) numerically to determine the nature of the unstable waves. 

Fig.  2  is  a plot of v/fi.  vs kr    for V../V.   = 0.037,   T    = T.     and u)    /Q 
1     e     dii e   1     pee 

= 10 (for n = 10G cm"3 and B = 0.3 gauss).  For 0+ and T. = 1000°K, 

this V,./V. corresponds to L « 13r. w 7S meters, which is well within 
dx 1      r x 

the range shown by Costa and Kelley (1978a)^ and also corresponds to 

V,. ~ 40 m/sec, which is well within the realm of bubble rise veloc- 
di 7 

ities exhibited by in situ measurements (Kelley et al., 1976; McClure 

et al., 1977) and numerical simulations (Ossakow et al., I978).  The 

solid curve corresponds to the DC instability (Eq. (k))and the dashed 

curve corresponds to the LHD instability (Eq. (5)). We emphasize that 

the values of v., and kr. will determine which mode is excited. How- 
ii      1 

ever, for most equatorial Spread F ionospheric parameters, the LHD or 

the transition region (C. < l) will be favored. Also, there are un- 

stable waves for kr » 1 which are not shown in Fig. 2.  Two impor- 

tant features of Fig. 2 are:  (l) the maximum growth rate y    is a 

significant fraction of the ion cyclotron frequency (y    « 0.170. for 

DC and y    = 0.08Q for LHD); and (2) unstable waves exist in the regime 

6 



kr. » 1 (kr. >  25 or kr 5& 0.15). If C£ « 1 the DC is excited with 
1       i e     ' f 

the I  « 1 peak at kr » 0.15 corresponding to a wavelength X ~ 1 meter 

and the C = 3 peak, extending to kr » O.58, corresponding to A « 36 cm 

(415 MHz backscatter).  The LHD instability (C >  l) has a continuous 

spectrum and can excite a broad range of wavelengths (X ~ 10cm - 2m). 

Figure 3 is a plot of v„/n. vs VJ./V. for 1=1, and to /n = 10, 
Mi    di 1     e   i     pe e 

where y    is the maximum growth rate with respect to k. Again the solid 

curve is the DC instability and the dashed curve is the LHD instability. 

Note that the DC instability makes a transition to the LHD instability 

for V../V. w 0.11.  The essential features of this curve are that these 
di 1 

instabilities can be excited at very low drift velocities (V,/V w 0.01) 

and for moderate drifts (vd-/
v. w O.l) can have very large growth rates 

(Y ~ 0.6 n.). 

III. Discussion and Summary 

We have shown that the lower-hybrid-drift instability (LHD) or the 

drift-cyclotron (DC) instability can be active in the equatorial Spread 

F ionosphere.  The parameter which predominately determines which in- 

stability will be excited is C, = (v../O.)(kr.)2.  If C. « 1, the DC 
f    ii i   1        f 

1      + + 
instability can be unstable for L/r. < (m./8m ) .  For 0  (m. = 16 H ), J lie 1       ' 

T = 1000°K where r. w 5.6 m, this corresponds to density gradient scale 

lengths L < jkO  m which exist during equatorial Spread F conditions 

(Costs and Kelley, 1978a).  The growth rate of the instability maxi- 

mizes for kr « 1 and from the C. condition this requires v.j/0. <<: 

e f ii 1 

m /m,) ~ 3-^x10 5 or n «  103 cm 3.  However, for longer unstable wave- 
e i 

lengths such as kr M 30 (X ~ lm) the condition becomes n « 2xl04cm~3. 



This may be the case in the lower equatorial F region or well within 

equatorial Spread F bubbles.  On the other hand, for C > 1 the LHD 

instability can become unstable for which there is no threshold density 

gradient scale length.  Since C ^ 1 for most typical equatorial Spread 

F ionospheric parameters, we expect the LHD instability to be dominant. 

Furthermore, these instabilities have very large growth rates 

(y ^ n.) which result in growth times T = y 1 less than a second. This 

can account for the apparent rapid growth of the small scale irregular- 

ities observed by Jicamarca radar backscatter (Farley et al., 1970; 

Woodman and LaHoz, 1976) as well as by the ALTAIR radar.  Since maximum 

growth occurs for kr « 1, taking r = 3-3 cm, we have that this corre- 

sponds to fluctuations with X « 21 cm and this can account for the UHF 

(415 MHz) radar backscatter (see Fig. l).  Also, from the example given 

in Fig. 2, we note that unstable waves grow for kr » 0.15 which corre- 

sponds to irregularities with X ~ lm and this can explain the VHF (50 

MHz and I55 MHz) radar irregularities.  Thus, the DC or LHD instability 

can linearly excite the small scale irregularities observed by radar 

backscatter in the equatorial Spread F region on very short time 

scales. 

We finally mention several points related to the excitation of 

these high frequency drift waves.  First, although wavenumbers parallel 

to the magnetic field have not been considered in this letter (kji = 0), 

kn+0 modes also exist with weaker growth rates (Gary and Sanderson, 

1977). These waves, with finite kiu could account for the large wings 

observed in the Doppler spectra (as originally pointed out by Woodman 

and LaHoz, I976).  Second, the anomalous transport properties associ- 

8 



ated with the DC and LHD instabilities can be effective in limiting the 

amplitude of the long wavelength modes which initially excite these 

waves (i.e., via a two-step process). And finally, it has recently 

been shown that low frequency density fluctuations due to drift waves 

can stabilize the collisionless, high frequency drift-cyclotron in- 

stability (Hasegawa, 1978). Because of similar physical effects, this 

stabilization mechanism may also stabilize the lower-hybrid-drift in- 

stability and therefore, put a nonlinear threshold requirement on the 

instability. Unfortunately, Hasegawa's stabilization criterion is not 

applicable for plasma conditions in    equatorial Spread F where 

collisional effects can be important. Furthermore, the magnitude of 

the low frequency density fluctuations observed in the ionosphere are 

not well known. However, this stabilization process may indeed be im- 

portant for equatorial Spread F and a detailed analysis of this effect 

will be presented later. 
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Fig. 1 — ALTAIR radar (at Kwajalein) unaveraged received signal (in dB relative to a 
one m2 point target) versus altitude for (A) VHF, 155 MHz, and (B) UHF, 415 MHz, 
for a single pulse at 0955 GMT (2155 LT) on 17 Aug 1977.  The radar is observing 
perpendicular to the magnetic field and sampling the F region starting at 320 km. 
For (A) there are 124 samples separated by 30m range increments and for (B) there 
are 246 samples separated by 15m range increments.   Both results are from the #1 
(of 21) beam scan position with an elevation angle = 65.5° and azimuth angle 
• —61.0° and with a stationary range recording window.   The dashed lines represent 
the rms noise background.   Note that the noise background of the UHF signal, in 
addition to the total signal strength, is smaller than at VHF.   The UHF beam is 1.1° 
wide while the VHF beam is 2.8° wide. 
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